Airway, Ventilation, and Sedation in Acute Stroke

Leslie Simon, DO Chair of Emergency Medicine, Simulation Director Mayo Clinic Disclosures/Conflicts of Interest: None

Neurocrit Care. 2012 Sep;17 Suppl 1:S4-20.

Objectives

- Which stroke/neuro patient needs intubation and ventilation? Select induction medications
- Review ideal sedation for stroke patients in emergency settings
- Outline some initial ventilator settings for stroke patients and those at risk for raised ICP

Clinical Scenario

- 88 yo female driver MVA with LOC
- PMH: unknown
- VS: HR 130, BP 170/45, RR 30, T 37.5°C, SpO₂ 91%
- PE: GCS 6, anisocoria

Questions:

1. When To Intubate?

2. If so, what are the steps, and medications?

Checklists

Indications for Intubation

- Failure to oxygenate
- Failure to ventilate
- Failure to protect airway
- Anticipated decline requiring transport or immediate treatment

Pre-Intubation Exam

- Level of arousal
- Basic cortical functions
- Cranial nerves
- Motor function
- Sensation
- Tone
- Reflexes
- Evidence of seizure activity
- Cervical spine tenderness

Airway Assessment

Assess for Difficult Bag Mask Ventilation

Assess for Difficult Intubation

<u>MOANS</u>

Mask seal Obesity./Obstruction Age > 55 years No teeth Stiff lungs

LEMON

Look

Mallampati classification

Evaluate mouth opening and airway position Mallampati score Obstruction Neck mobility

Pre-Intubation Considerations

- Most experienced provider to the bedside
- Confirm resources to establish emergent surgical airway
- Confirm appropriate airway adjunct equipment

Pre-Intubation Considerations

- Consider awake intubation
- Plan for failed airway
- Pre-oxygenate, apneic oxygenation
- Consider appropriate induction agents
- Cervical spine precautions
- Consider ICP

Intubation: Special Considerations

Special Considerations

Cervical Spine Injury

Intracranial Hypertension

Brain Ischemia

Special Consideration: Unstable Cervical Spine

- Enlist expert help
- Manual in-line stabilization
- No cricoid pressure
- Do not delay emergent intubations
- Awake fiberoptic intubation preferred if time and circumstances allow
- Can also consider video laryngoscopy

Special Consideration: Elevated ICP

- Maintain CPP
 - ICP < 22 mmHg
 - MAP 80 110 mmHg
 - CPP > 60 mmHg
- Avoid rises in ICP
 - Patient positioning
 - Reflex sympathetic response
 - Avoid hypoventilation

Special Consideration: Brain Ischemia

Careful attention to avoid hypotension

• relative or actual hypotension can dramatically increase brain infarct size

Bolus fluid prior to intubation

Ketamine or Etomidate are preferred

Maintain normocapnia

Intubation

- At least two providers at bedside
 - One experienced provider
- Elevated HOB to 30^o
- Preoxygenate
 - HFNC 60-70 L/min, or
 - NPPV FiO₂ 100%, or
 - Nonrebreather mask

Rapid Sequence Induction

- Pretreatment medications mitigate reflex sympathetic response:
 - Lidocaine 1.5 mg/kg ; 60 90 seconds before
 - Fentanyl 2 3 mcg /kg; 30 60 seconds before
- Induction agent and paralytic simultaneously
- Allow for full muscle relaxation
 - 45 seconds for succinylcholine
 - 60 seconds for rocuronium
- Administer 6-8 low volume ventilations

RSI Agents

Drugs	Comments
Etomidate	 Minimal hemodynamic effects (CPP) <i>Drug of Choice</i> with elevated ICP
Propofol	Vasodilator; may require pressor Rx
Thiopental	 Decreases CMRO2 and CBF Venodilator with risk of hypotension
Ketamine	With concurrent sedation, safe with elevated ICP
Succinylcholine	 Depolarizing NMB (hyperkalemia risk) Transient (subclinical) effect on ICP

Intubation

- Continue apneic oxygenation
 - NC at 15 L/min
 - HFNC at 60-70 L/min
- 2-3 attempts if SpO₂ > 95%
- BMV between attempts
- Change operator and/or technique between attempts

- Most experience provider
- Continue apneic oxygenation
- Consider video laryngoscopy

Unsuccessful Intubation

Post-Intubation

- Secure the ETT
- Confirm tube position
- Set cuff pressure 20-30 cmH₂0
- SpO₂ and ETCO₂ monitoring
- Arterial blood gas
- Sedation while NMB in effect

Mechanical Ventilation: Outline

- Target SpO₂ > 94%
- Target pre-morbid pCO₂
- Target pH 7.3-7.4
- Hyperventilate ONLY for herniation
- Prevent lung injury
- Normalize work of breathing
- Address ventilator-patient dyssynchrony

Basic Ventilator Settings

Choose a Control mode

- Normalize the work of breathing
- Set tidal volume at 6-8 cc/kg IBW
- Set rate to keep post intubation minute ventilation (V_E) at or near pre-intubation V_E
- ABG after a steady state
 - 10-20 minutes

Post-Intubation Ventilation

Oxygenation

- **Hyperoxia** (PaO₂ > 300 mmHg): poor outcomes
 - inflammation
 - direct epithelial toxicity
 - absorption atelectasis
- Hypoxia
 - major cause of secondary brain injury
- Goals
 - Provide FiO₂ at 0.5 and titrate to the lowest FiO₂ (FiO2 < 0.5 if possible) to keep SpO₂ > 94%

Ventilation

Table 2 Chronic respiratory acidosis: estimated pre-morbid pCO₂ based on admission HCO₃ level

Admission bicarbonate	45	42	39	36	33	30	27	24
Predicted "usual" pCO2	92.5	85	77.5	70	62.5	55	47.5	40

- Cerebral vasoconstriction and decreased CBF
- Poor outcomes with TBI
- Hypoventilation
 - Cerebral vasodilation and increased ICP
- Chronic hypercarbic patients (COPD, sleep-disorders)
 - Altered baseline set-point for CNS vascular tone
 - use pH (not PCO₂) as target
- Neuromonitoring may be needed to assess brain perfusion

Special Considerations: Therapeutic Hyperventilation

Decreases ICP by decreasing CBF, but may increase brain ischemia

Maximal cerebral vasoconstriction at pCO₂ near 20 mmHg

Less than 20 mmHg, no further therapeutic advantage and may \downarrow cardiac preload and cardiac output

Hyperventilation is a temporizing measure

Recommend EtCO2 monitoring

If use is prolonged, requires special neuromonitoring to verify adequate CBF

Special Considerations: Spontaneous Hyperventilation

Metabolic acidosis

Spontaneous hyperventilation of brain injury

Suppression is NOT recommended unless hyperventilation is shown to be causing brain ischemia

Special Considerations: ARDS

- ARDS patients treated with lung protective ventilation
 - V_T 4-6cc/kg
 - $P_{PLAT} \leq 30 \text{ cm H}_2O$
 - Optimal PEEP
 - $F_1O_2 < 0.6$
 - Safety of permissive hypercapnea in brain injured patients unknown

VENTILATOR INDUCED LUNG INJURY

Barotrauma

Volutrauma

Atelectrauma

High FiO₂

High levels of circulating inflammatory cytokines

Sedation

• Target light sedation

– RASS 0 to -2

- Consider analgesia-based sedation
- Consider intermittent sedation
- Dexmedetomidine or propofol when continuous sedation is needed
- Deep Sedation for ICP control, seizure management or NMB use
- Routine sedation interruptions unless contraindicated

The Sedation Conundrum

- Obliterates the neurological examination, makes monitoring difficult, prolongs ventilation and hospitalization, causes delirium, and renders prognostication inaccurate.
- Decreases CMRO₂, ICP, and systemic metabolic stress, protects against ischemia, provides comfort and amnesia, and facilitates procedures

Sedative & Analgesia Agents

Drug	Comments
Propofol	Short acting, \downarrow ICP, hypotension, lipid load, propofol infusion syndrome
Benzodiazepines (Midazolam)	Antiepileptic, amnestic, accumulates with renal failure and prolonged administration, delirium
Dexmedetomidine	Not respiratory suppressant, hypotension, bradycardia, less delirium
Barbiturates	Antiepileptic, \downarrow ICP, immunosuppression, cardiovascular depression
Fentanyl or Remifentanil	Analgesics that are short-acting; used alone for pain or in combination with sedative

Sedation Targets

Minimize sedation

Treat pain and anxiety as separate entities

Titrate sedation to effect

Validated Scales

Short acting sedatives preferred with daily awakening, if clinically appropriate

Sedation Targets

Richmond Agitation and Sedation Scale

Score	Descriptor	Characteristics
+4	Combative	Combative, violent, immediate danger to staff
+3	Very agitated	Pulls or removes tube(s) or catheter(s); aggressive
+2	Agitated	Frequent nonpurposeful movement, fights ventilator
+1	Restless	Anxious, apprehensive but movements not aggressive or vigorous
0	Alert and calm	
-1	Drowsy	Not fully alert, but has sustained awakening to voice (eye opening and contact >10 seconds)
-2	Light sedation	Briefly awakens to voice (eye opening and contact <10
-3		seconds)
-4	Moderate sedation	Movement or eye opening to voice (but no eye contact)
	Deep sedation	No response to voice, but movement or eye opening to physical stimulation
-5	Unarousable	No response to voice or physical stimulation

Daily Interruption of Sedation?

- Interruption facilitates a systematic daily assessment of individualized sedation needs and target goals and may limit sedative doses
- Not validated in a NCC population
- May lead to cerebral metabolic distress
 - caution with RSE or elevated ICP
- May need to be more frequent than daily for neurologic examination
- Possible role for BIS monitoring

Pediatric Considerations

- Criteria for intubation are similar to adults albeit use Pediatric GCS ≤ 8
- Children have anatomical differences that must be considered in preparation and during intubation
- Assume full stomach and c-spine injury
- For hemodynamically unstable patients, etomidate and rocuronium are often used for intubation
- Fentanyl and ketamine are IV alternative sedatives
- Propofol (especially >24 hours) avoided in children for concern of propofol infusion syndrome

Handoff Checklist

□ Mental status (GCS, FOUR) & neuro exam prior to intubation

□ Vitals pre and post intubation, drugs used

□ Ease of intubation & ETT position confirmation

 \Box Ventilation targets and ETCO₂ when appropriate

□ Analgesia and sedation strategy

